Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2688382.v1

ABSTRACT

Targeted public health interventions for an emerging epidemic are essential for preventing pandemics and reducing their impact on health and society. During 2020–2022, China invested significant efforts in strict zero-COVID policies to contain outbreaks of varying scales caused by different SARS-CoV-2 variants. This presented a unique opportunity to utilise a real-world dataset to investigate the effects and challenges of public health interventions aimed at eliminating local transmission of emerging or introduced respiratory infections in diverse settings. Based on a multi-year empirical dataset containing 131 outbreaks observed in China from April 2020 to May 2022 and simulated scenarios, we ranked the relative effectiveness of the public health interventions by their reduction in instantaneous reproduction number. We found that, overall, reducing physical contact between individuals was most effective (median 23%, interquartile range [IQR] 20–26%), followed by the use of face masks (19%, IQR 16–23%) and close contact tracing (15%, IQR 14–16%). However, contact tracing played a more critical role in containing outbreaks during the initial phases, but as the spread persisted, social distancing measures became increasingly prominent and mass screening likely had little effect. In addition, these measures struggled to zero out infections that had high transmissibility and a short latent period, regardless of population size. Our findings provide quantitative insights on the impacts of different rapid public-health responses against emerging contagions with varying epidemiological and socio-economic contexts.


Subject(s)
Respiratory Tract Infections
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.11.04.22281943

ABSTRACT

Human mobility patterns changed greatly due to the COVID-19 pandemic. Despite many analyses investigating general mobility trends, there has been less work characterising changes in mobility on a fine spatial scale and developing frameworks to model these changes. We analyse zip code-level mobility data from 26 US cities between February 2 - August 31, 2020. We use Bayesian models to characterise the initial decrease in mobility and mobility patterns between June - August at this fine spatial scale. There were similar temporal trends across cities but large variations in the magnitude of mobility reductions. Long-distance routes and higher-income subscribers, but not age, were associated with greater mobility reductions. At the city level, mobility rates around early April, when mobility was lowest, and over summer showed little association with non-pharmaceutical interventions or case rates. Changes in mobility patterns lasted until the end of the study period, despite overall numbers of trips recovering to near baseline levels in many cities.


Subject(s)
COVID-19
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.08.25.22278443

ABSTRACT

Background: The decline in COVID-19 mRNA vaccine effectiveness (VE) is well established, however the impact of variant-specific immune evasion and waning protection remains unclear. Here, we use whole-genome-sequencing (WGS) to tease apart the contribution of these factors on the decline observed following the introduction of the Delta variant. Further, we evaluate the utility of calendar-period-based variant classification as an alternative to WGS. Methods: We conducted a test-negative-case-control study among people who received SARS-CoV-2 RT-PCR testing in the Yale New Haven Health System between April 1 and August 24, 2021. Variant classification was performed using WGS and secondarily by calendar-period. We estimated VE as one minus the ratio comparing the odds of infection among vaccinated and unvaccinated people. Results: Overall, 2,029 cases (RT-PCR positive, sequenced samples) and 343,985 controls (negative RT-PCRs) were included. VE 14-89 days after 2nd dose was significantly higher against WGS-classified Alpha infection (84.4%, 95% confidence interval: 75.6-90.0%) than Delta infection (68.9%, CI: 58.0-77.1%, p-value: 0.013). The odds of WGS-classified Delta infection were significantly higher 90-149 than 14-89 days after 2nd dose (Odds ratio: 1.6, CI: 1.2-2.3). While estimates of VE against calendar-period-classified infections approximated estimates against WGS-classified infections, calendar-period-based classification was subject to outcome misclassification (35% during Alpha period, 4% during Delta period). Conclusions: These findings suggest that both waning protection and variant-specific immune evasion contributed to the lower effectiveness. While estimates of VE against calendar-period-classified infections mirrored that against WGS-classified infections, our analysis highlights the need for WGS when variants are co-circulating and misclassification is likely.


Subject(s)
COVID-19 , Genomic Instability , Hepatitis D
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.19.22275339

ABSTRACT

Objective: To assess the Connecticut Department of Corrections (DOC) COVID-19 vaccine program within jails. Methods: We conducted a retrospective cohort analysis among people who were incarcerated in a DOC-operated jail between February 2 and November 8, 2021, and were eligible for vaccination at the time of incarceration (intake). We compared the vaccination rates before and after incarceration using an age-adjusted survival analysis with a time-varying exposure of incarceration and an outcome of vaccination. Results: During the study period, 3,716 people spent at least 1 night in jail and were eligible for vaccination at intake. Of these residents, 136 were vaccinated prior to incarceration, 2,265 had a recorded vaccine offer, and 476 were vaccinated while incarcerated. The age-adjusted hazard of vaccination following incarceration was significantly higher than prior to incarceration (12.5; 95% CI: 10.2-15.3). Conclusions: We found that residents were more likely to become vaccinated in jail than the community. Though these findings highlight the utility of vaccination programs within jails, the low level of vaccination in this population speaks to the need for additional program development within jails and the community.


Subject(s)
COVID-19
5.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.19.22274056

ABSTRACT

Importance: The benefit of primary and booster vaccination in people who experienced prior SARS-CoV-2 infection remains unclear. Objective: To estimate the effectiveness of a primary (two-dose) and booster (third dose) vaccination against Omicron infection among previously infection people. Design: Test-negative case-control study. Setting: Yale New Haven Health System facilities serving southern Connecticut communities. Participants: Vaccine eligible people who received SARS-CoV-2 RT-PCR testing between November 1, 2021, and January 31, 2022. Exposure: COVID-19 mRNA primary and booster vaccination. Main Outcomes and Measures: We conducted two analyses, each with an outcome of Omicron BA.1 variant infection (S-gene target failure defined) and each stratified by prior SARS-CoV-2 infection status. We estimated the effectiveness of primary vaccination during the period before and during booster eligibility (14-149 and [≥]150 days, respectively, after 2nd dose) and of booster vaccination ([≥]14 days after booster dose). To test whether booster vaccination reduced the risk of infection beyond that of the primary series, we compared the odds among boosted and booster eligible people. Results: Overall, 10,676 cases and 119,397 controls were included (median age: cases: 35 years, controls: 39 years). Among cases and controls, 6.1% and 7.8% had a prior infection. The effectiveness of primary vaccination 14-149 days after 2nd dose was 36.1% (95% CI, 7.1-56.1%) and 28.5% (95% CI, 20.0-36.2%) for people with and without prior infection, respectively. The effectiveness of booster vaccination was 45.8% (95% CI, 20.0-63.2%) and 56.9% (95% CI, 52.1-61.2%) in people with and without prior infection, respectively. The odds ratio comparing boosted and booster eligible people with prior infection was 0.83 (95% CI, 0.56-1.23), whereas the odds ratio comparing boosted and booster eligible people without prior infection was 0.51 (95% CI, 0.46-0.56). Conclusions and Relevance: Primary vaccination provided significant but limited protection against Omicron BA.1 infection among people with and without prior infection. While booster vaccination was associated with additional protection in people without prior infection, it was not associated with additional protection among people with prior infection. These findings support primary vaccination in people regardless of prior infection status but suggest that infection history should be considered when evaluating the need for booster vaccination.


Subject(s)
COVID-19 , Hallucinations , Infections
6.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.30.22273193

ABSTRACT

The effectiveness of inactivated vaccines (VE) against symptomatic and severe COVID-19 caused by omicron is unknown. We conducted a nationwide, test-negative, case-control study to estimate VE for homologous and heterologous (BNT162b2) booster doses in adults who received two doses of CoronaVac in Brazil in the Omicron context. Analyzing 1,386,544 matched-pairs, VE against symptomatic disease was 8.6% (95% CI, 5.6-11.5) and 56.8% (95% CI, 56.3-57.3) in the period 8-59 days after receiving a homologous and heterologous booster, respectively. During the same interval, VE against severe Covid-19 was 73.6% (95% CI, 63.9-80.7) and 86.0% (95% CI, 84.5-87.4) after receiving a homologous and heterologous booster, respectively. Waning against severe Covid-19 after 120 days was only observed after a homologous booster. Heterologous booster might be preferable to individuals with completed primary series inactivated vaccine.


Subject(s)
COVID-19
7.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.17.22272561

ABSTRACT

Between February 2019 and March 2021, 388 dried blood spot samples were obtained from 257 children <30 months of age who were part of a longitudinal maternal/infant cohort in Haiti. Among the children followed, 16.7% became seropositive; sampling date was the only covariate associated with the hazard of seroconversion.


Subject(s)
Severe Acute Respiratory Syndrome
8.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.03.22271803

ABSTRACT

BackgroundThe CDC recommends serial rapid antigen assay collection within congregate facilities for screening and outbreak testing. Though modeling and observational studies from community and long-term care facilities have shown serial collection provides adequate sensitivity and specificity, the diagnostic accuracy of this testing strategy within correctional facilities remains unknown. MethodsUsing Connecticut Department of Corrections (DOC) data from November 21st 2020 to June 15th 2021, we estimated the accuracy of a rapid assay, BinaxNOW, under three collection strategies, a single test in isolation and two and three serial tests separated by 1-4 day intervals. Diagnostic accuracy metrics were estimated in relation to RT-PCRs collected within one day before the first or after the last included rapid antigen tests in a series. ResultsOf the 17,669 residents who contributed at least one RT-PCR or rapid antigen during the study period, 3,979 contributed [≥]1 paired rapid antigen test series. In relation to RT-PCR, the three-rapid antigen test strategy had a sensitivity of 89.6% (95% confidence intervals: 86.1-92.6%) and specificity of 97.2% (CI: 95.1-98.3%). The sensitivities for two and one-rapid antigen test strategy were 75.2% and 52.8%, respectively, and the specificities were 98.5% and 99.4%, respectively. The sensitivity was higher among symptomatic residents and when the RT-PCR was collected before the rapid antigen tests. ConclusionsWe found the serial collection of an antigen test resulted in high diagnostic accuracy. These findings support serial testing within correctional facilities for outbreak investigation, screening, and when rapid detection is required (such as intakes or transfers).

9.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.24.22271002

ABSTRACT

Serological assays used to estimate SARS-CoV-2 seroprevalence rely on manufacturer cut-offs established based on more severe early cases who tended to be older. We conducted a household-based serosurvey of 4,677 individuals from 2,619 households in Chennai, India from January to May, 2021. Samples were tested for SARS-CoV-2 IgG antibodies to the spike (S) and nucelocapsid (N) proteins. We calculated seroprevalence using manufacturer cut-offs and using a mixture model in which individuals were assigned a probability of being seropositive based on their measured IgG, accounting for heterogeneous antibody response across individuals. The SARS-CoV-2 seroprevalence to anti-S and anti-N IgG was 62.0% (95% confidence interval [CI], 60.6 to 63.4) and 13.5% (95% CI, 12.6 to 14.5), respectively applying the manufacturer's cut-offs, with low inter-assay agreement (Cohen's kappa 0.15). With the mixture model, estimated anti-S IgG and anti-N IgG seroprevalence was 64.9% (95% Credible Interval [CrI], 63.8 to 66.0) and 51.5% (95% CrI, 50.2 to 52.9) respectively, with high inter-assay agreement (Cohen's kappa 0.66). Age and socioeconomic factors showed inconsistent relationships with anti-S IgG and anti-N IgG seropositivity using manufacturer's cut-offs, but the mixture model reconciled these differences. In the mixture model, age was not associated with seropositivity, and improved household ventilation was associated with lower seropositivity odds. With global vaccine scale-up, the utility of the more stable anti-S IgG assay may be limited due to the inclusion of the S protein in several vaccines. SARS-CoV-2 seroprevalence estimates using alternative targets must consider heterogeneity in seroresponse to ensure seroprevalence is not underestimated and correlates not misinterpreted.

10.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.18.22270820

ABSTRACT

COVID-19 has disproportionally burdened racial and ethnic minority groups within the United States. Leveraging statewide data, we examined the evolution of racial and ethnic disparities in COVID-19 related deaths among Connecticut residents residing in non-congregate settings over three periods of the COVID-19 pandemic. Despite observing large disparities in the age-adjusted mortality rates between Hispanics, non-Hispanic Blacks, and non-Hispanic Whites during the initial pandemic period (March to August 2020), we observed meaningful reductions in the disparities during the subsequent periods (August 2020 to July 2021; July to mid December 2021). Further, during the third period, we failed to find a significant difference in age-adjusted mortality between non-Hispanic Blacks and non-Hispanic Whites. These findings provide evidence that attenuation of racial and ethnic disparities in COVID-19 related outcomes are achievable.


Subject(s)
COVID-19
11.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.13.22270856

ABSTRACT

Background The structural environment of urban slums, including physical, demographic and socioeconomic attributes, renders inhabitants more vulnerable to SARS-CoV-2 infection. Yet, little is known about the specific determinants that contribute to high transmission within these communities. Methods and findings We performed a serosurvey of an established cohort of 2,035 urban slum residents from the city of Salvador, Brazil between November 2020 and February 2021, following the first COVID-19 pandemic wave in the country. We identified high SARS-CoV-2 seroprevalence (46.4%, 95% confidence interval [CI] 44.3-48.6%), particularly among female residents (48.7% [95% CI 45.9-51.6%] vs. 43.2% [95% CI 39.8-46.6%] among male residents), and among children (56.5% [95% CI 52.3-60.5%] vs. 42.4% [95% CI 39.9-45.0%] among adults). In multivariable models that accounted for household-level clustering, the odds ratio for SARS-CoV-2 seropositivity among children was 1.96 (95% CI 1.42-2.72) compared to adults aged 30-44 years. Adults residing in households with children were more likely to be seropositive; this effect was particularly prominent among individuals with age 30-44 and 60 years or more. Women living below the poverty threshold (daily per capita household income


Subject(s)
COVID-19
12.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.13.22270904

ABSTRACT

Background: As the COVID-19 pandemic evolves, there is a need for reliable and scalable seroepidemiology methods to estimate incidence, monitor the dynamics of population-level immunity, and guide mitigation and immunization policies. Our aim was to evaluate the reliability of normalized ELISA optical density (nOD) at a single dilution as a predictor of SARS-CoV-2 immunoglobulin titers derived from serial dilutions. Methods: We conducted serial serological surveys of a community-based cohort from the city of Salvador, Brazil after two sequential COVID-19 epidemic waves. Anti-SARS-CoV-2 spike protein immunoglobulin G (anti-S IgG) ELISA (Euroimmun AG) was performed with serial 3-fold dilutions of sera from 54 of the 1101 cohort participants. We estimated interpolated ELISA titers, used parametric models to fit the relationship between nOD at a single 1:100 dilution and interpolated titers, and assessed the correlation between changes in nOD and changes in titers. Results: The relationship between nOD at a single 1:100 dilution and interpolated titers fit a log-log curve, with a residual standard error of 0.304. We derived a conversion table of nOD to interpolated titer values. Additionally, there was a high correlation between changes in nOD and changes in interpolated titers between paired serial samples (r = 0.836, {rho} = 0.873). Changes in nOD reliably predicted increases and decreases in titers, with 98.1% agreement ({kappa} = 95.9%). Conclusion: Single nOD measurements can reliably estimate SARS-CoV-2 antibody titers, significantly reducing time, labor, and resource needs when conducting large-scale serological surveys to ascertain population-level changes in exposure and immunity.


Subject(s)
COVID-19
13.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.21.21268058

ABSTRACT

Background. COVID-19 vaccines have proven highly effective among SARS-CoV-2 naive individuals, but their effectiveness in preventing symptomatic infection and severe outcomes among individuals with prior infection is less clear. Methods. Utilizing national COVID-19 notification, hospitalization, and vaccination datasets from Brazil, we performed a case-control study using a test-negative design to assess the effectiveness of four vaccines (CoronaVac, ChAdOx1, Ad26.COV2.S and BNT162b2) among individuals with laboratory-confirmed prior SARS-CoV-2 infection. We matched RT-PCR positive, symptomatic COVID-19 cases with RT-PCR-negative controls presenting with symptomatic illnesses, restricting both groups to tests performed at least 90 days after an initial infection. We used multivariable conditional logistic regression to compare the odds of test positivity, and the odds of hospitalization or death due to COVID-19, according to vaccination status and time since first or second dose of vaccines. Findings. Among individuals with prior SARS-CoV-2 infection, vaccine effectiveness against symptomatic infection [≥] 14 days from vaccine series completion was 39.4% (95% CI 36.1-42.6) for CoronaVac, 56.0% (95% CI 51.4-60.2) for ChAdOx1, 44.0% (95% CI 31.5-54.2) for Ad26.COV2.S, and 64.8% (95% CI 54.9-72.4) for BNT162b2. For the two-dose vaccine series (CoronaVac, ChAdOx1, and BNT162b2), effectiveness against symptomatic infection was significantly greater after the second dose compared with the first dose. Effectiveness against hospitalization or death [≥] 14 days from vaccine series completion was 81.3% (95% CI 75.3-85.8) for CoronaVac, 89.9% (95% CI 83.5-93.8) for ChAdOx1, 57.7% (95% CI -2.6-82.5) for Ad26.COV2.S, and 89.7% (95% CI 54.3-97.7) for BNT162b2.


Subject(s)
COVID-19 , Death , Infections
14.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.19.21260802

ABSTRACT

BackgroundA two-dose regimen of ChAdOx1 coronavirus disease 19 (Covid-19) vaccine with an inter-dose interval of three months has been implemented in many countries with restricted vaccine supply. However, there is limited evidence for the effectiveness of ChAdOx1 by dose in elderly populations in countries with high prevalence of the Gamma variant of severe acute respiratory syndrome 2 (SARS-CoV-2). MethodsWe conducted a test-negative case-control study to estimate the effectiveness of ChAdOx1 vaccine in adults aged 60 years or older during a Gamma-variant-associated epidemic in Sao Paulo state, Brazil, between 17 January and 2 July 2021. Cases and matched test-negative controls were individuals, identified from surveillance databases, who experienced an acute respiratory illness and underwent SARS-CoV-2 RT-PCR testing. We used conditional logistic regression to estimate the effectiveness by dose against RT-PCR-confirmed Covid-19, Covid-19 hospitalization, and Covid-19-related death. Results61,164 individuals were selected into matched case-control pairs. Starting [≥]28 days after the first dose, adjusted effectiveness of a single dose of ChAdOx1 was 33.4% (95% CI, 26.4 to 39.7) against Covid-19, 55.1% (95% CI, 46.6 to 62.2) against hospitalization, and 61.8% (95% CI, 48.9 to 71.4) against death. Starting [≥]14 days after the second dose, the adjusted effectiveness of the two-dose schedule was 77.9% (95% CI, 69.2 to 84.2) against Covid-19, 87.6% (95% CI, 78.2 to 92.9) against hospitalization, and 93.6% (95% CI, 81.9 to 97.7) against death. ConclusionsCompletion of the ChAdOx1 vaccine schedule afforded significantly increased protection over a single dose against mild and severe Covid-19 outcomes in elderly individuals during widespread Gamma variant transmission.


Subject(s)
COVID-19
15.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.23.21259415

ABSTRACT

Post-authorization observational studies play a key role in understanding COVID-19 vaccine effectiveness following the demonstration of efficacy in clinical trials. While bias due to confounding, selection bias, and misclassification can be mitigated through careful study design, unmeasured confounding is likely to remain in these observational studies. Phase III trials of COVID-19 vaccines have shown that protection from vaccination does not occur immediately, meaning that COVID-19 risk should be similar in recently vaccinated and unvaccinated individuals, in the absence of confounding or other bias. Several studies have used the estimated effectiveness among recently vaccinated individuals as a negative control exposure to detect bias in vaccine effectiveness estimates. In this paper we introduce a theoretical framework to describe the interpretation of such a bias-indicator in test-negative studies, and outline assumptions that would allow the use of recently vaccinated individuals to correct bias due to unmeasured confounding.


Subject(s)
COVID-19
16.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.19.21257472

ABSTRACT

ObjectiveTo estimate the effectiveness of the inactivated whole-virus vaccine, CoronaVac, against symptomatic COVID-19 in the elderly population of Sao Paulo State, Brazil during widespread circulation of the Gamma variant. DesignTest negative case-control study. SettingHealth-care facilities in Sao Paulo State, Brazil. Participants43,774 adults aged 70 years or older who were residents of Sao Paulo State and underwent SARS-CoV-2 RT-PCR testing from January 17 to April 29, 2021. 26,433 cases with symptomatic COVID-19 and 17,622 symptomatic, test negative controls were selected into 7,950 matched pairs, according to age, sex, self-reported race, municipality of residence, prior COVID-19 status and date of RT-PCR testing. InterventionVaccination with a two-dose regimen of CoronaVac. Main outcome measuresRT-PCR confirmed symptomatic COVID-19 and COVID-19 associated hospitalizations and deaths. ResultsAdjusted vaccine effectiveness against symptomatic COVID-19 was 18.2% (95% CI, 0.0 to 33.2) in the period 0-13 days after the second dose and 41.6% (95% CI, 26.9 to 53.3) in the period [≥]14 days after the second dose. Adjusted vaccine effectiveness against hospitalisations was 59.0% (95% CI, 44.2 to 69.8) and against deaths was 71.4% (95% CI, 53.7 to 82.3) in the period [≥]14 days after the second dose. Vaccine effectiveness [≥]14 days after the second dose declined with increasing age for the three outcomes, and among individuals aged 70-74 years it was 61.8% (95% CI, 34.8 to 77.7) against symptomatic disease, 80.1% (95% CI, 55.7 to 91.0) against hospitalisations and 86.0% (95% CI, 50.4 to 96.1) against deaths. ConclusionsVaccination with CoronaVac was associated with a reduction in symptomatic COVID-19, hospitalisations and deaths in adults aged 70 years or older in a setting with extensive Gamma variant transmission. However, significant protection was not observed until completion of the two-dose regimen, and vaccine effectiveness declined with increasing age amongst this elderly population. Summary boxesO_ST_ABSWhat is already known on this topicC_ST_ABSRandomised controlled trials (RCT) have yielded varying estimates (51 to 84%) for the effectiveness of the inactivated whole-virus vaccine, CoronaVac, against symptomatic COVID-19. Current evidence is limited on whether CoronaVac is effective against severe disease or death caused by the SARS-CoV-2 variant of concern, Gamma, or in the setting of extensive Gamma variant circulation. More evidence is needed for the real-world effectiveness of CoronaVac and other inactivated vaccines among elderly individuals, a population that was underrepresented in RCTs of these vaccines. What this study addsA two-dose regimen of CoronaVac provides significant protection against symptomatic COVID-19, hospitalisations and deaths among adults [≥]70 years of age in the setting of widespread Gamma variant transmission. Significant protection did not occur until [≥]14 days after administration of the second dose of CoronaVac. The effectiveness of CoronaVac declines with increasing age in the elderly population.


Subject(s)
COVID-19
17.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.07.21255081

ABSTRACT

Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, Gamma, emerged in the city of Manaus in late 2020 during a large resurgence of coronavirus disease (COVID-19), and has spread throughout Brazil. The effectiveness of vaccines in settings with widespread Gamma variant transmission has not been reported. Methods We performed a matched test-negative case-control study to estimate the effectiveness of an inactivated vaccine, CoronaVac, in healthcare workers (HCWs) in Manaus, where the Gamma variant accounted for 86% of genotyped SARS-CoV-2 samples at the peak of its epidemic. We performed an early analysis of effectiveness following administration of at least one vaccine dose and an analysis of effectiveness of the two-dose schedule. The primary outcome was symptomatic SARS-CoV-2 infection. Findings For the early at-least-one-dose and two-dose analyses the study population was, respectively, 53,176 and 53,153 HCWs residing in Manaus and aged 18 years or older, with complete information on age, residence, and vaccination status. Among 53,153 HCWs eligible for the two-dose analysis, 47,170 (89%) received at least one dose of CoronaVac and 2,656 individuals (5%) underwent RT-PCR testing from 19 January, 2021 to 13 April, 2021. Of 3,195 RT-PCR tests, 885 (28%) were positive. 393 and 418 case- control pairs were selected for the early and two-dose analyses, respectively, matched on calendar time, age, and neighbourhood. Among those who had received both vaccine doses before the RT-PCR sample collection date, the average time from second dose to sample collection date was 14 days (IQR 7-24). In the early analysis, vaccination with at least one dose was associated with a 0.50-fold reduction (adjusted vaccine effectiveness (VE), 49.6%, 95% CI 11.3 to 71.4) in the odds of symptomatic SARS-CoV-2 infection during the period 14 days or more after receiving the first dose. However, we estimated low effectiveness (adjusted VE 36.8%, 95% CI -54.9 to 74.2) of the two-dose schedule against symptomatic SARS-CoV-2 infection during the period 14 days or more after receiving the second dose. A finding that vaccinated individuals were much more likely to be infected than unvaccinated individuals in the period 0-13 days after first dose (aOR 2.11, 95% CI 1.36-3.27) suggests that unmeasured confounding led to downward bias in the vaccine effectiveness estimate. Interpretation Evidence from this test-negative study of the effectiveness of CoronaVac was mixed, and likely affected by bias in this setting. Administration of at least one vaccine dose showed effectiveness against symptomatic SARS-CoV-2 infection in the setting of epidemic Gamma variant transmission. However, the low estimated effectiveness of the two-dose schedule underscores the need to maintain non-pharmaceutical interventions while vaccination campaigns with CoronaVac are being implemented. Funding Fundação Oswaldo Cruz (Fiocruz); Municipal Health Secretary of Manaus Research in Context Evidence before this study We searched PubMed for articles published from inception of the pandemic until April 3, 2021, with no language restrictions, using the search terms “P.1” AND “vaccine” AND “SARS-CoV-2”. Additionally, we searched for “CoronaVac” AND “SARS-CoV-2”. Early studies have found plasma from convalescent COVID-19 patients and sera from vaccinated individuals have reduced neutralisation of the SARS-CoV-2 variant, Gamma or P.1, compared with strains isolated earlier in the pandemic. Pfizer BNT162b2 mRNA, Oxford-AstraZeneca ChAdOx1, and CoronaVac are the only vaccines for which such data has been published to date. No studies reported effectiveness of any vaccine on reducing the risk of infection or disease among individuals exposed to P.1 or in settings of high P.1 transmission. Added value of this study This study finds that vaccination with CoronaVac was 49.4% (95% CI 13.2 to 71.9) effective at preventing COVID-19 in a setting with likely high prevalence of the Gamma Variant of Concern. However, an analysis of effectiveness by dose was underpowered and failed to find significant effectiveness of the two-dose schedule of CoronaVac (estimated VE 37.1%, 95% CI -53.3 to 74.2). Implications of all the available evidence These findings are suggestive for the effectiveness of CoronaVac in healthcare workers in the setting of widespread P.1 transmission but must be strengthened by observational studies in other settings and populations. Based on this evidence, there is a need to implement sustained non-pharmaceutical interventions even as vaccination campaigns continue.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
18.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.23.20248789

ABSTRACT

Objective: To characterize the SARS-CoV-2 testing cascade and associated barriers in three US states. Methods: We recruited participants from Florida, Illinois, and Maryland (~1000/state) for an online survey September 16 - October 15, 2020. The survey covered demographics, COVID-19 symptoms, and experiences around SARS-CoV-2 PCR testing in the prior 2 weeks. Logistic regression was used to analyze associations with outcomes of interest. Results: Overall, 316 (10%) of 3,058 respondents wanted/needed a test in the two weeks prior to the survey. Of these, 166 (53%) were able to get tested and 156 (94%) received results; 53% waited 8 or more days to get results from when they wanted/needed a test. There were no significant differences by state. Among those wanting/needing a test, getting tested was significantly less common among men (aOR: 0.46) and those reporting black race (aOR: 0.53) and more common in those reporting recent travel (aOR: 3.35). Conclusions: There is an urgent need for a national communication strategy on who should get tested and where one can get tested. Additionally, measures need to be taken to improve access and reduce turn-around-time.


Subject(s)
COVID-19
19.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.08.20246017

ABSTRACT

ObjectiveTo measure the association of race, ethnicity, comorbidities, and insurance status with need for hospitalization of symptomatic Emergency Department (ED) patients with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. MethodsThis study is a retrospective case-series of symptomatic patients presenting to a single ED with laboratory-confirmed SARS-CoV-2 infection from March 12-August 9, 2020. We collected patient-level information regarding demographics, public insurance status (Medicare or Medicaid), comorbidities, level of care, and mortality using a structured chart review. We compared demographics and comorbidities of patients who were (1) able to convalesce at home, (2) required admission to general medical service, (3) required admission to intensive care unit (ICU), or (4) died within 30 days of the index visit. Multivariable logistic regression analyses were performed to report adjusted odds ratios (aOR) and the associated 95% confidence intervals (95% CI) with hospital admission versus ED discharge home. ResultsIn total, 993 patients who presented to the ED with symptoms were included in the analysis with 370 (37.3%) patients requiring hospital admission and 70 (7.1%) patients requiring ICU care. Patients requiring admission were more likely to be Black or African American, to be Hispanic or Latino, or to have public insurance (either Medicaid or Medicare.) On multivariable logistic regression analysis comparing which patients required hospital admission, African-American race (aOR 1.4, 95% CI 0.7-2.8) and Hispanic ethnicity (aOR 1.1, 95% CI 0.5-2.0) were not associated with need for admission but, public insurance (Medicaid: aOR 3.4, 95% CI 2.2-5.4; Medicare: aOR 2.6, 95% CI 1.2-5.3; Medicaid and Medicare: aOR 3.6 95% CI 2.1-6.2) and the presence of hypertension (aOR 1.8, 95% CI 1.2-2.7), diabetes (aOR 1.6, 95% CI 1.1-2.5), obesity (aOR 1.7, 95% CI 1.1-2.5), heart failure (aOR 3.9, 95% CI 1.4-11.2), and hyperlipidemia (aOR 1.8, 95% CI 1.2-2.9) were identified as independent predictors of hospital admission. ConclusionComorbidities and public insurance are predictors of more severe illness for patients with SARS-CoV-2. This study suggests that the disparities in severity seen in COVID-19 among African Americans and Hispanics are likely to be closely related to low socioeconomic status and chronic health conditions and do not reflect an independent predisposition to disease severity.


Subject(s)
Heart Failure , Diabetes Mellitus , Severe Acute Respiratory Syndrome , Obesity , Hypertension , COVID-19 , Hyperlipidemias
20.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.29.20221036

ABSTRACT

Non-pharmaceutical interventions (NPIs) remain the only widely available tool for controlling the ongoing SARS-CoV-2 pandemic. We estimated weekly values of the effective basic reproductive number (Reff) using a mechanistic metapopulation model and associated these with county-level characteristics and NPIs in the United States (US). Interventions that included school and leisure activities closure and nursing home visiting bans were all associated with an Reff below 1 when combined with either stay at home orders (median Reff 0.97, 95% confidence interval (CI) 0.58-1.39)* or face masks (median Reff 0.97, 95% CI 0.58-1.39)*. While direct causal effects of interventions remain unclear, our results suggest that relaxation of some NPIs will need to be counterbalanced by continuation and/or implementation of others.

SELECTION OF CITATIONS
SEARCH DETAIL